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Abstract

This document provides a worked example of how a Kalman �lter actually

works. It illustrates, how the information content changes as hits are added.

The e�ect of multiple scattering is illustrated in section 4. The example is a

straight line in 2D.

1 The Kalman Filter Equations

In this section the Kalman �lter equations will be stated without proof. A derivation

of these equations can be found in many places. A lengthy discussion can be found

in, for example, reference [1], while a shorter one can be found in reference [2].

First, it is necessary to de�ne some notation. Let � describe the track parameters,

for example the helical parameters, (�; �

0

; d

0

; cot �; z

0

), the forward spectrometer pa-

rameters, (�; x

0

; y

0

; x

0

; y

0

), or the straight line parameters (m; b). The discussion of

the coordinate system in which these track parameters are de�ned will be discussed

later. Let V describe the covariance matrix of the track parameters. For this example

we will only consider 1D measuring devices; let d

m

denote the measurement made by

the device and let � denote the error on d

m

. Also let d(�) denote the the measure-

ment as predicted by the track parameters. Finally, let D denote the derivatives of

the measurement with respect to the track parameters,

D

i

=

@d

m

@�

i

: (1)

The Kalman �lter equations take one estimator of the track (�; V ) and add a new

hit to obtain an improved estimator, (�

0

; V

0

):

�

0

= � + V

0

D

d

m

� d(�)

�

2

V

0

= V �

V DD

T

V

�

2

+D

T

V D

: (2)

No matrix inversion is needed in this calculation.
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Figure 1: The diagonal line illustrates a track which is produced at the IP and which

travels to the right, following a straight line. The vertical lines represent equally

spaced measurement planes, which measure the y coordinate. The separation between

measurement planes is L. The coordinate system used at the start of the �t is shown

at the lower right.

2 Setting Up the Example

Consider a trajectory which is just a straight line in the (x; y) plane, as shown in

�gure 1. In this �gure the track starts at the interaction point (IP) and it proceeds to

the right. The trajectory intersects a series of planes which measure y at �xed values

of x. The intersection points are labeled A, B, C, D and E. Each of the planes has

a y-resolution of � and we denote the values of the measurements at each point by

(y

A

; y

B

; y

C

; y

D

; y

E

).

The goal of the Kalman �lter is to obtain an estimate of the trajectory which is

valid in the neighbourhood of the IP.

The equation of the trajectory is,

y = mx+ b: (3)

That is, the track parameters and covariance matrix have the form,

� =

 

m

b

!

V =

 

V

mm

V

mb

V

mb

V

bb

!

: (4)

3 Fitting Without Multiple Scattering

3.1 Initialization

Many coordinate systems will be used in this example. The �rst of them is shown

in �gure 1; the origin of x is at the x of the measurement point farthest from the

IP, point E. The coordinate axes (x; y) are aligned with the x and y axes of the
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measurement device. The origin of y is not important and we can choose it to be

that shown in the �gure.

In order to start the �t, the track parameters are initialized to some values which

are obtained from the pattern recognition routines and the covariance matrix is ini-

tialized to a diagonal matrix with large numbers on the diagonal.

� =

 

m

0

b

0

!

V =

 

V

0

mm

0

0 V

0

bb

!

: (5)

Appropriate values for the starting covariance matrix diagonal elements and con-

straints on the quality of the initial track parameters are discussed below.

3.2 Add the First Hit

In order to add the hit at point E to the track, we apply equation 2. Because the track

parameters are expressed in a local coordinate system the derivatives, and therefore

the rest of the algebra, have a particularly simple form,

D =

 

0

1

!

(6)

D

T

V D = V

0

bb

(7)

V DD

T

V =

 

0 0

0 V

2

0

bb

!

(8)

V

0

=

0

@

V

0

mm

0

0 V

0

bb

�

V

2

0

bb

�

2

+V

0

bb

1

A

(9)

The above form is what the computer program actually evaluates. However its infor-

mation content can be made more clear by the use of a Taylor expansion,

V

0

�

 

V

0

mm

0

0 �

2

�

�

4

V

0

bb

+ : : :

!

�

 

V

0

mm

0

0 �

2

!

: (10)

Recall that the measurement at the �rst plane is denoted by y

E

. And we identify

d(�) = b

0

. Therefore,

�

0

=

 

m

0

b

0

!

+

 

V

0

mm

0

0 �

2

! 

0

1

!

(y

E

� b

0

)

�

2

(11)

=

 

m

0

y

E

!

: (12)
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Not surprisingly, adding one hit tells us that we have a well de�ned impact parameter

but no knowledge of the slope. An important property of this result is that it no longer

depends on b

0

and V

0

bb

.

At this point the interested reader can do various exercises to check appropriate

values for V

0

bb

. For example, a real life computer program will evaluate

V

0

bb

= V

0

bb

�

V

2

0

bb

�

2

+ V

0

bb

(13)

exactly as written here, which will have precision problems if V

0

bb

is too large. If, on

the other hand, V

0

bb

is too small, then the Taylor series in equation 10 may not be

truncated. If one retains the next order term and computes �

0

, one will see that �

0

is

biased towards b

0

. This is an undesirable property because we want the �nal result

to depend only on the hits, not on the initial guess at the trajectory.

3.3 Transport to Next Hit

In this step we transport the track from point E to point D. To do this we set up a new

coordinate system on the second measurement plane and make a basis transformation

into this new coordinate system. To be speci�c the new coordinate system has axes

which are parallel to those of the old system and has an origin which is o�set by

(�L; 0). It should be emphasized that this procedure is simply expressing the same

track in a new basis.

By de�nition the equation of the same trajectory in the new coordinate system is

given by,

y

0

= m

0

x

0

+ b

0

; (14)

and we identify, y

0

= y, x

0

= x+ L, m

0

= m and b

0

= b�mL. Here (x

0

; y

0

) and (x; y)

denote the coordinates of a �xed point in the new (old) coordinate system; they are

not the coordinates of the axes of one system in the other system. In this notation,

the new track parameters are,

�

00

=

 

m

0

y

E

�m

0

L

!

: (15)

( The quantity L was de�ned above to be positive. )

In order to transform the covariance matrix we need to evaluate,

A

ij

=

@�

0

i

@�

j

=

 

1 0

�L 1

!

: (16)
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Therefore,

V

00

= AV

0

A

T

=

 

V

0

mm

�LV

0

mm

�LV

0

mm

�

2

+ L

2

V

0

mm

!

: (17)

Several properties of this result are worth comment. The correlation coe�cients are

very, very close to �1:0. The error on the impact parameter has again become large,

because the extrapolation uses a slope with a large error. The error on the slope is

unchanged by this operation.

To reiterate, this is the same track which we had at the start of this section. The

only di�erence is that it is described in a new coordinate system.

3.4 Add on the Next Hit

The Kalman �lter equations can now be applied again to add the hit at point D onto

the track. Since the track is described in a local coordinate system, the derivatives

are again simple,

D =

 

0

1

!

: (18)

This gives the new covariance matrix,

V

000

=

 

V

0

mm

�LV

0

mm

�LV

0

mm

�

2

+ L

2

V

0

mm

!

�

1

2�

2

+ L

2

V

0

mm

 

L

2

V

2

0

mm

�LV

0

mm

(�

2

+ L

2

V

0

mm

)

�LV

0

mm

(�

2

+ L

2

V

0

mm

) (�

2

+ L

2

V

0

mm

)

2

!

�

0

B

@

2�

2

L

2

��

2

L

��

2

L

�

2

1

C

A

: (19)

This again has the expected form | V

bb

depends only on the local information while

V

mm

depends on both � and L. Again the Taylor expansion is done only to illustrate

the information content; the actual program computes the full expression.

This time one identi�es d(�) = y

E

�m

0

L and the new track parameters are,

�

000

=

 

m

0

y

E

�m

0

L

!

+ V

000

 

0

1

!

(y

D

� (y

E

�m

0

L))

�

2

=

0

@

(y

E

� y

D

)

L

y

D

1

A

(20)

Again, the form is as expected. In particular, all of m

0

, b

0

, V

0

mm

and V

0

bb

have

dropped out of the answer.

At this point we have an estimator of the trajectory, which is valid in the neigh-

bourhood of point D, but which does not use all of the available information.
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3.5 Transport to and Adding the Third Hit

Now consider adding the hit at point C to the track. As before, we transport to the

next hit by setting up a new coordinate system on the measurement plane; again the

translation between the coordinate systems is (�L; 0).

In this new basis, the track parameters of the trajectory are,

�

(iv)

=

 

m

000

b

000

�m

000

L

!

=

0

@

(y

E

� y

D

)

L

y

D

� (y

E

� y

D

)

1

A

(21)

It should be emphasized that this step is simply re-expressing the same trajectory in

a new basis. Again the transformation matrix for V is,

A =

 

1 0

�L 1

!

: (22)

Therefore,

V

(iv)

= AV

000

A

T

=

0

B

@

2�

2

L

2

�3�

2

L

�3�

2

L

5�

2

1

C

A

: (23)

This has the sensible behavior that, relative to equation 19, the error on the impact

parameter has grown ( since we are extrapolating ).

Now we can add the hit at point C to the covariance matrix,

�

2

+D

T

V

(iv)

D = 6�

2

V

(v)

=

0

B

@

�

2

2L

2

��

2

2L

��

2

2L

5�

2

6

1

C

A

: (24)

Notice that the two diagonal elements are now smaller than they were when only two

hits were on the track (equation 19).

Finally, the new estimator of the track parameters is,

�

(v)

=

0

@

y

E

� y

C

2L

2y

D

� y

E

+ 5y

C

6

1

A

: (25)

The measurement y

D

does not enter into the expression for the slope because of the

symmetries of this particular example. When more hits are added to the track, y

D

will reappear in the expression for m via d(�) in equation 2.
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An interesting exercise is to consider the case that the distance to the third hit

is some distance other than L, say L

0

. One property which must be true is that the

longer L

0

is, the smaller is V

(v)

mm

and the closer V

(v)

bb

approaches �

2

from below. This

result is achieved as follows. The longer is L

0

, the closer to �1:0 is the correlation

coe�cient in equation 23. It is this large correlation coe�cient which forces expected

result when the next hit is added.

4 Including Multiple Scattering in the Fit

For this discussion the example is modi�ed to include an in�nitesimally thin scattering

surface coincident with each measurement plane. This discussion proceeds as above

for the stages of initialization and adding the �rst hit. The multiple scattering at the

�rst plane is lost in the large initial value of V

0

mm

. The discussion continues as above

for the propagation to the second plane and the addition of the second hit. That is,

we pick up the discussion at equations 19 and 20.

In this model the the scattering surfaces are in�nitesimally thin. Therefore, at the

scattering surface they contribute an error only to the slope, not to the intercept and

not to the o�-diagonal term. As the track is transported away from the scattering

surface, the e�ects of the scattering are propagated into the error on the intercept

and into the o�-diagonal term.

Let the scattering surface introduce an error �, in the slope. When this is added

to the covariance matrix, still at the plane of measurement D, equation 19 becomes,

V

(vi)

=

0

B

@

2�

2

L

2

+ �

2
��

2

L

��

2

L

�

2

1

C

A
: (26)

The track parameters, equation 20, remain unchanged.

After transport to point C the covariance matrix becomes,

V

(vii)

=

0

B

@

2�

2

L

2

+ �

2

�3�

2

L

� �

2

L

�3�

2

L

� �

2

L 5�

2

+ �

2

L

2

1

C

A

: (27)

Compared with equation 23, this has a larger error in the impact parameter and

correlation coe�cients of larger magnitude. Any more detailed comments would

require speci�c assumptions about the relative magnitudes of �, � and L.

After transport to point C, the track parameters are unchanged from before,

�

(vii)

= �

(iv)

=

0

@

(y

E

� y

D

)

L

y

D

� (y

E

� y

D

)

1

A

:
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Adding the hit at point C to the covariance matrix gives,

V

(viii)

=

0

B

@

2�

2

L

2

+ �

2
�3�

2

L

� �

2

L

�3�

2

L

� �

2

L 5�

2

+ �

2

L

2

1

C

A
(28)

�

1

6�

2

+ �

2

L

2

 

(3�

2

=L+ �

2

L)

2

�(3�

2

=L + �

2

L)(5�

2

+ �

2

L

2

)

�(3�

2

=L + �

2

L)(5�

2

+ �

2

L

2

) (5�

2

+ �

2

L

2

)

2

!

:

This is su�ciently complicated that it seems wisest to choose a particular example,

say, �

2

L

2

= �

2

. Then,

V

(viii)

=

0

B

@

5�

2

7L

2

�4�

2

7L

�4�

2

7L

6�

2

7

1

C

A

: (29)

Compare this with equation 24 and see that, as expected, the slope and intercept are

more poorly measured with multiple scattering than without. Also the covariance

matrix elements have a slightly smaller magnitude. Among other things, this means

that the next hit will add less information to the slope. Keeping with the example of

�

2

L

2

= �

2

, the track parameters in the neighbourhood of point C are,

�

(viii)

=

0

@

3y

E

+ y

D

� 4y

C

7L

2y

D

� y

E

+ 6y

C

7

1

A

: (30)

This can be compared with equation 25. Now, the symmetry has been broken by the

multiple scattering and m again depends on y

D

. Also b is now pulled more strongly

by y

C

than it was without multiple scattering.

5 Finishing the Fit

In this example, with or without multiple scattering, the next step is to propagate

the track to the plane at point B and to add the hit from that plane. Then repeat

again for point A. There is nothing new to learn by wading through the algebra of

these steps.

When the hit at point A has been added, one has an estimator of the trajectory

which uses all of the available information and which is valid in the neighbourhood

of point A. To obtain an estimator of the trajectory in the neighbourhood of the IP,

one would extrapolate the track from point A to the IP. In practice one would make

one last basis transformation, using the nominal IP as the origin.

6 Computing Hit Residuals

After �nishing the �t as described in the previous section, the result is a set of track

parameters, and their covariance matrix, which are valid in the neighbourhood of
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point A. These track parameters can be used to compute the residual of the measure-

ment at point A. It is clear how to compute the residual either including the hit at

point A in the �t, or excluding it from the �t.

The entire procedure could also have been started at point A and run to point E

to give an estimator of the trajectory which is valid in the neighbourhood of point E.

This set of track parameters can be used to compute the hit residual at point E.

But what about the residual at point C? One must not start with the track which is

valid in the neighbourhood of A and extrapolate it to C. This would give an incorrect

treatment of the multiple scattering between C and A. Similarly, one must not start

with the track from the reverse �t, which is valid in the neighbourhood of E. When

doing the �t from E to A, there was a track that was valid in the neighbourhood

of C. However that track did not include the information from two hits and so it

must not be used to compute the residual at C. Similarly for the track valid in the

neighbourhood of C which existed during the �t from A to E.

The answer is the following. Fit the track from E to D and extrapolate the �t

result to C. Fit the track from A to B and extrapolate the result to C. Call these two

extrapolated results (�

1

; V

1

) and (�

2

; V

2

). The optimal estimator of the trajectory in

the neighbourhood of C, (�; V ), is,

V = (V

�1

1

+ V

�1

2

)

�1

� = V (V

�1

1

�

1

+ V

�1

2

�

2

): (31)

The track parameters (�; V ) can be used to compute the residual at point C, without

including the hit at point C itself in the �t. If one wants the hit included in the �t,

one can include it in either one of the contributing �ts or one can add it in at the

end.

And a side note. Equation 31 is reminiscent of the formula for the weighted mean

of two numbers,

�x =

1

1

�

2

1

+

1

�

2

2

 

x

1

�

2

1

+

x

2

�

2

2

!

: (32)

Now, what about the residual at point B? As it turns out, one simply follows the

same procedure as for point C. One might worry that the track �t which started at A

contains only the information from one hit, which is not enough to de�ne a straight

line. While this is indeed true, it has no e�ect on the result; the information about

the track is contained in its covariance matrix and it will be give the correct weight

when applying equation 31.

The above procedure can be implemented for every hit on the track using a single

E to A pass of the �lter and a single A to E pass of the �lter. It is necessary, of

course, to store the intermediate results at each hit during the �rst pass. With this

technique it is as quick and easy to compute residuals excluding the local hit from

the �t as it is to compute residuals which include the local hit in the �t. This is
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in contrast to global �tter techniques which, for a track with N

hit

hits, require N

hit

separate �ts to compute residuals that exclude each local hit in turn.

7 More Complex Treatments of Multiple Scatter-

ing

In the above example the treatment of multiple scattering was very simpli�ed | it

was assumed that the detector planes were in�nitesimally thin and that there was no

scattering in the gas between planes. In order to treat the planes as a thick scattering

surface, one need only modify equation 26 and add terms to the remaining elements

of V . One can also add the scattering accumulated in the gas just before adding each

hit. A more complete version might add half of the scattering in each plane before

adding the hit and then add the remaining half.

8 Constraints on the Initial Track Parameters

Inspection of the above example will show that, for a linear trajectory, the initial

values of m

0

and b

0

are completely irrelevant. So long as V

0

mm

and V

0

bb

are su�ciently

large, m

0

and b

0

have no e�ect on the output. This arises from two things: the

derivatives of the measurements with respect to the track parameters are independent

of the track parameters and the transport derivatives (equation 16) are independent

of the track parameters.

When the track follows a non-linear trajectory, for example a helix, these two

conditions no longer apply and the result of the �t will depend on the starting pa-

rameters. In practice one �nds that, for a very wide range of starting parameters,

the variation in the �nal �ltered values is on the order of 1% of the error on the

parameters. Variations outside of this range only occur when there has been a gross

failure of pattern recognition and the Kalman �lter is asked to operate on hits which

do not, in fact, form a track. The bottom line is that one can safely seed a Kalman

�lter using the same values which are used to seed global �nal �tters.

With non-linear trajectories there is another problem which can occur early in the

�t | there are rare cases in which an unusual pattern of residuals among the �rst

few hits can throw the �t outside of its radius of convergence. The solution to this

problem is well understood and is described in reference [1]. In brief, the solution is

to expand around the seed track and not to update the seed until the error on the

expansion parameters is small.
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9 Final Comments

The method of using a new coordinate system for each hit is not intrinsic to the

Kalman �lter algorithm. The example could equally have been implemented using a

�xed coordinate system. In the method of moving coordinate systems, however, the

information content of the procedure is much more clear. Other important features

of the moving coordinate system are that it greatly simpli�es the algebra and that it

makes the code more robust against numerical instabilities.
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